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Abstract

In this short note we make it clear under what conditions the Theorem of ref-
erence [1] can be extended to spin-spin correlation functions of mixed short-long
range ferromagnetic vector spin models in the disordered phase.

In the Concluding Remarks of Ref. [1], the authors claim that their Theorem, which
concerns the long distance behavior of the connectivity function τxy(β) of a mixed short-
long range bond percolation model in the subcritical regime, i.e., for values of β such that
χ(β) ≡

∑
x τ0x(β) is finite, is also valid for short-long range ferromagnetic spin models

under the same condition χ(β) < ∞, i.e., in the disordered phase. The aim of this short
note is to make it clear under what conditions the claim holds and how the proof presented
in Ref. [1] can be adapted for this case.

Here, χ(β) is the susceptibility function, defined by

χ(β) =
∑
x

〈~σ0 · ~σx〉

where 〈~σx · ~σy〉 is the infinite volume spin-spin correlation function, taken as the limit of
the finite volume one

〈~σx · ~σy〉Λ =
1

ZΛ

∫
Ω|Λ|

~σx · ~σy e−βHΛ({~σ})
∏
i∈Λ

dµ(~σi),
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with x = (x0, x1) ∈ Λ ⊂ Zk+d and ~σx = (σ
(1)
x , σ

(2)
x , · · · , σ(N)

x ) ∈ RN . ZΛ is partition
function (normalizing factor) and HΛ is the Hamiltonian, given by

HΛ({~σ}) = −
∑
u,v∈Λ

Juv ~σu · ~σv,

where Juv ≥ 0 is the translation invariant ferromagnetic spin interaction

Juv =


K(‖u1 − v1‖) if u0 = v0;

1 if u1 = v1 and ‖u0 − v0‖ = 1;

0 otherwise,

where the function K(r) is such that
∑

r≥0 r
d−1K(r) < ∞. Finally, the single spin

distribution dµ(~σ) will be assumed of the form

dµ(~σ) ≡ e−f(‖~σ‖2)

N
d~σ

where N is a normalization factor and the exponent f(t) is such that multi-point corre-
lation functions make sense.

We wish to find, for which values of the spin dimensionality N , there are sufficient condi-
tions on the exponent f(t) and on the long range interaction function K(r) that guarantee
the existence of positive constants C = C(β) and m = m(β) such that

〈~σx · ~σy〉 ≤ C K(‖x1 − y1‖) e−m‖x0−y0‖ (1)

holds whenever β is such that χ(β) < ∞. For a large class of N = 1 spin models, the
condition χ(β) <∞ is equivalent to requiring that β < βc, where βc is the inverse critical
temperature of the model, see [2]. This is particularly true for the N = 1 spin models
with spin interactions given, for instance, by

K(r) =
2

1 + rd+ε
, (2)

with ε > 0, and

K(r) =
2

(2 + r)d lnp(2 + r)
, (3)

with p > 1.

To prove the upper bound (1) in the disordered phase, we will have to assume the existence
of positive constants C̃ and ν such that, for r > 0,

(2/r)ν ≤ K(r/2) ≤ C̃ K(r). (4)

We remark that both interactions (2) and (3) satisfy the bounds (4). We can now state
our result:
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Theorem Assume that K(r) satisfies the bounds (4) for some positive constants C̃ and
ν and suppose that there exists S > 0 such that 〈~σx · ~σy〉 ≤ S2 uniformly in x and y. If β
is such that χ(β) <∞ and if:

1. N = 1 and the exponent f(t) is such that f ′′(t) ≥ 0 for t ≥ 0, or;

2. N = 2 and the exponent f(t) is a polynomial whose coefficients for degree greater
than one are positive, or;

3. N = 2, 3, 4 and the spin variables are uniformly distributed on the unitary sphere;

then there are positive constants C = C(β) and m = m(β) such that (1) holds for all
x, y ∈ Zk+d.

Then, the above theorem states that spin-spin correlations decay exponentially in the
“time direction” Zk and decay like K(‖x1 − y1‖) in the “space direction” Zd, the decay
holding whenever χ(β) <∞. To understand why we need hypothesis 1. or 2. or 3. in order
to prove the Theorem we recall that the proof of Ref. [1] is heavily based on: positivity of
the connectivity function; on the Simon-Lieb Inequality [3, 4]; on the Aizenman-Newman
multi-scale analysis [5]. Since we are assuming that the exponent f(t) is even, it is easy
to conclude that Griffiths first inequality (G-I) [6, 7]

〈σA〉Λ ≥ 0

holds for any Λ ⊂ Zk+d and any finite set A ⊂ Λ, with σA =
∏N

k=1

∏
i∈A(σ

(k)
i )ai , see

[8]. As we will explain below, hypothesis 1. or 2. or 3. will guarantee that some type of
Simon-Lieb Inequality is on hold so that the Aizenman-Newman multi-scale analysis will
go through as long as we assume the bounds (4). The Simon-Lieb (Rivasseau) inequality
[3, 4, 9] states that

〈~σx · ~σy〉 ≤ β
∑
u∈B
v∈Bc

〈~σx · ~σu〉B Juv 〈~σv · ~σy〉, (5)

where x ∈ B, y ∈ Bc. It follows from [10] that the above inequality holds under the
hypothesis 1. or 2. of our theorem. Under the hypothesis 3., i.e., when spin variables
are uniformly distributed in the unit sphere SN−1, N = 2, 3, 4, Aizenman and Simon [11]
proved that

〈~σx · ~σy〉 ≤ (β/N)
∑
u∈B
v∈Bc

〈~σx · ~σu〉 Juv 〈~σv · ~σy〉. (6)

Proof of the Theorem: The proof is similar to the one given in [1] for the (k + d)-
dimensional mixed (exponential-polynomial) bond percolation model. Here, we fill in the
steps of the proof which don’t come directly from the above reference. The first step is to
prove exponential decay of correlations in the “time direction” Zk whenever χ(β) is finite
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and this is done by replacing τxy by 〈~σx ·~σy〉, puv by βKuv and using G-I and inequality (5)
or (6) depending on which hypothesis 1., 2. or 3. is on use, see the beginning of Section
2 of [1]. We get that there are positive constants L0 = L0(β) and m = m(β) such that

〈~σx · ~σy〉 ≤ S2e−m‖x0−y0‖

whenever χ(β) <∞ and ‖x0 − y0‖ > L0.

To obtain the decay in the “space direction” Zd, we first observe that a modified version
of Simon’s Inequality holds for Tm′(x, y) ≡ em

′‖x0−y0‖〈~σx · ~σy〉, m′ > 0:

Tm′(x, y) ≤
∑

u∈CL(x)

v∈Cc
L

(x)

Tm′(x, u) Juv Tm′(v, y), (7)

where CL(x) ≡ {z ∈ Zk+d; ‖x1 − y1‖ ≤ L} is the “vertical cylinder” of radius L centered
at x and y ∈ CcL(x). As in [1], we take m′ = m− δ, with δ > 0. Iteration of inequality (7),
for β such that χ(β) < ∞, allows for the wished decay but the choice of α, see Ref. [1],
has to be slightly modified: since we are assuming the existence of C̃ and ν such that the
bounds (4) are valid, α should belong to the interval (0, 1/(2νC̃)). Take x and y such that
‖x1 − y1‖ > L0 and define L ≡ ‖x1 − y1‖/4. Proceeding with the argument exactly as in
[1], if χ(β) is finite then we get the following inequality for Tm′(L) ≡ sup

u∈Cc
L(0)

Tm′(0, u):

Tm′(L) ≤ χ2
m′Kx1y1

n−1∑
j=0

(C̃2α)j + αnTm′(L/2
n). (8)

Taking n such that L2−n ≤ L0, it follows that

αn <
1

2νn
=

1

Kx1y1

Kx1y1

2νn
≤ Kx1y1

(4L)ν

2νn
≤ Kx1y14νLν0,

where we have used the lower bound in (4). Using this upper bound in (8), together with
Tm′(x, y) ≤ Tm′(L) if y ∈ CcL(x) and Tm′(L

′) ≤ χm′ for any L′ > 0, we conclude that

〈~σx · ~σy〉 ≤ CKx1y1e
−m0‖x0−y0‖

if χ(β) <∞, proving the upper bound (1).

Remark Under the hypothesis 1. or 2. of the Theorem, Griffiths Second Inequality also
holds and one can then conclude that there exist positive constants C1 = C1(β) and
m1 = m1(β) such that

〈~σx · ~σy〉 ≥ C1Kx1y1e
−m1‖x0−y0‖

for any x, y ∈ Zk+d and any β > 0.
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